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Worked performed during this period includes the investigation into eigenvalue behav-
ior of several different classes of large dimensional random matrices. They are: 1) a class of
random matrices important to array signal processing and wireless communications with
the goal of proving exact separation of their eigenvalues; 2) an ensemble of random matri-
ces used to estimate the powers transmitted by multiple signal sources in multi-antenna
fading channels; 3) another ensemble whose eigenvalues yield the mutual information of a
multiple antenna radio channel, for which a central limit theorem is proven; 4) ensembles
which yield robust estimation of a population covariance matrix with application to array
signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear
statistics of its eigenvalues, whose limiting empirical distribution of its eigenvalues is stud-
ied with application toward computing the power of a likelihood ratio test for determining
the presence of spike eigenvalues in the population covariance matrix. Details are given
below.

Information-plus-noise model. This matrix is defined as

Cn = (1/N)(Rn + σXn)(Rn + σXn)∗,

where, Rn and Xn are both n×N , the entries of Xn are independent standardized random
variables, and σ > 0. Here, both n and N are considered large and on the same order
of magnitude. As mentioned in the previous interim reports the eigenvalues of Cn are
significant to both array signal processing, where it models the sample correlation matrix
of N “snapshots” or recordings taken from a bank of n antennas of signals (the columns
of Rn) in a noise-filled environment (columns of σXn), and in wireless communications,
modeling schemes where the fading channel, (1/

√
N)(Rn + σXn), has non-zero means.

AssumeHn, the empirical distribution function of the eigenvalues of (1/N)RnR
∗
n, (Hn(x) =

(1/n)(number of eigenvalues of (1/N)RnR
∗
n ≤ x)) converges in distribution to H as n →

∞, and limn→∞ n/N = c > 0. Then it has been shown in reference [6] of the proposal that
Fn, the empirical distribution function of the eigenvalues of Cn, converges in distribution,
with probability one, to a non-random F , whose Stieltjes transform

m(z) =

∫
1

λ− z
dF (λ) =z > 0

is the unique solution for =z > 0 to

(∗) m =

∫
1

t
1+σ2cm − (1 + σ2cm)z + σ2(1− c)

dH(t).

Under additional assumptions on the entries of Xn the following has been shown in [1].
Assume [a1, a2] ⊂ (b1, b2) where b1 > 0 and (b1, b2) is outside the support of F . Let
cn = n/N and F cn,Hn denote the distribution having Stieltjes transform which satisfies
(∗) with c,H replaced by cn, Hn respectively. A natural assumption is to impose (b1, b2)
is also outside the support of F cn,Hn for all n large. Then, it is proven that

P(no eigenvalue of Cn appears in [a1, b1] for all n large) = 1.
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Time was devoted on showing the second part of exact separation, namely the correct
number of eigenvalues on either side of [a1, b1]. For Cn this should correspond to the
number of eigenvalues of (1/N)RnR

∗
n on either side of some interval (d1, d2). The strategy

is similar to that of reference [2] of the proposal, which establishes the exact separation
of the eigenvalues of a class of large dimensional sample covariance matrices. The idea
is to systematically increase the number of columns of (Rn + σXn), until the matrix
C ′n = (1/N ′)(R′n + σX ′n)(R′n + σX ′n)∗ (N ′ being the number of columns of R′n + σX ′n) is
close to (1/N)RnRn

∗+ σ2I, I being the n×n identity matrix. This can be achieved from
known results on the extreme eigenvalues of (1/N ′)X ′nX

′
n
∗

and on results established by
the principal investigator on the cross terms (1/N ′)(R′nX

′
n
∗

+X ′nR
′
n
∗
). The increase in the

number of columns is done in a finite number of steps, where at each step no eigenvalue
of C ′n will cross the interval [a1, b1].

The machinery in performing the steps is all in place, except for one important factor.
It is crucial that there is an interval in [a1, b1] which does not shrink to a point as the
number of columns increase, and the principle investigator has not yet shown this to be
true. In reference [7] of the proposal, for each cn, Hn, a function xn(b) for b > 0 is created
which is associated with [a1, b1] and increases on an interval, with minimum and maximum
values being the endpoints of the interval which contains [a1, b1] and is outside the support
of F cn,Hn . From simulations this interval appears to be increasing in length as cn decreases
(corresponding to the addition of more columns), but the intervals are not simply nested,
that is, not necessarily one outside the other. It is when the principal investigator shows
the intervals remain larger than some positive length will he be able to complete the proof
of exact separation. When he is able to do so, he will acknowledge funding from this grant.

Multi-source power estimation. Research was conducted on a way to estimate
the transmit powers of several sources in mult-antenna fading channels, when the number
of sensors and the number of samples are sufficiently large in comparison to the number of
sources. Consider K stations which transmit data, where, for k = 1, . . . ,K, transmitter
k has nk antennas with (unknown) transmission power Pk. These stations transmit to a
receiver, a collection of N sensing devices. Let Hk, N × nk denote the channel matrix
between transmitter k and the receiver. It is typically assumed that the entries of Hk are
independent with mean zero and variance (1/N). At time m (m = 1, . . . ,M) transmitter

k transmits vector x
(m)
k ∈ Cnk to the receiver, impaired by additive noise σw

(m)
k ∈ Cnk

(σ > 0). It is also typically assumed that the entries of x
(m)
k and w

(m)
k are independent

over position and time, and standardized. At time m the receiver senses

y(m) =
K∑
k=1

√
PkHkx

(m)
k + σw(m).

Let Y (N ×M), Xk (nk ×M), and W (N ×M) denote the respective matrices resulting

from placing each of y(m), x
(m)
k , and w(m) as columns of a matrix. With H = [H1, . . . , HK ]

and X = [XT
1 , . . . , X

T
K ]T , Y can be written as

Y = HP 1/2X + σW,
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where, with n = n1 + · · ·+ nK , P 1/2 is n× n diagonal with its first n1 entries P
1/2
1 , next

n2 entries P
1/2
2 , and so on.

The goal is to estimate the powers Pk from the matrix Y . This has been achieved by
extending the work of X. Mestre ([2]), who has determined an effective way of estimating
the population eigenvalues from those of the sampled ones of the matrix Bn described
in the proposal. This work in turn relied on references [1], [2], and [17] of the proposal.
Notice Y is the first N rows of (

HP 1/2 IN
01 02

)(
X
W

)
,

(IN N ×N identity matrix, 01, n× n, 02 n×N zero matrices), so that results in [1], [2],
would apply, if not for the fact that the entries of X and W are typically not of the same
distribution. In [3] the extension of [1] and [2] to non iid entries is made, and the following
is proven:

Theorem. Let BN = (1/M)Y Y ∗. Fix K, Assume M > N , n < N , M/N → c,
each N/nk → ck, as N → ∞ and certain assumptions on the size of c, and the ck’s.
Let λi denote the i-th smallest eigenvalue of BN and s = (

√
λ1, . . . ,

√
λN )∗. Then with

probability 1 P̂k → Pk as N →∞ where

P̂k =
NM

nk(M −N)

∑
i∈Nk

(ηi − µi),

where Nk = {N−
∑K
i=k ni+1, . . . , N−

∑K
i=k+1 ni}, the ηi’s are the ordered eigenvalues of

diag(λ1, . . . , λN )−(1/N)ss∗, and the µi’s are the ordered eigenvalues of diag(λ1, . . . , λN )−
(1/M)ss∗.

The paper demonstrates, through simulation, the superiority of this scheme over an-
other method of estimation, which uses moment methods.

Mutual information. This work concentrated on establishing a central limit theo-
rem on a quantity fundamental to MIMO (multiple input-multiple output) wireless com-
munications systems. Consider a communications system with n transmiting antennas
sending information to N receiving antennas. At an instant of time data xn ∈ Cn is
transmitted across the system, resulting on the received antennas the vector ynCN given
by

yn = Hnxn + zn.

Here, Hn, N×n, is the fading channel matrix, and zn ∈ CN is white noise on the receiving
antennas, having variance ρ for each of its components. In a Rician channel, it is assumed
that

Hn = (1/
√
n)R1/2

n XnT
1/2
n +An,

where Xn is N ×n containing iid complex Gaussian entries, Rn, N ×N , Tn n×n, and An,

N × n are deterministic with Rn and Tn Hermitian nonnegative definite (R
1/2
n and T

1/2
n

being their nonnegative definite square roots). Rn and Tn are, respectively the correlations
between the receive antennas and the transmit antennas. The An matrix allows for “direct
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line of sight” between each pair of transmit and receive antennas. According to the classical
work of Shannon, the mutual information of the system is given by

I =
N∑
j=1

log(ρ−1λj + 1) = log det(ρ−1HnH
∗
n + I),

where λ1 . . . , λN are the eigenvalues of HnH
∗
n. I is the rate at which, for any small

probability, p, a coding scheme can be found for which the data can be transmitted with
decoding error equal to p. Due to the entries of Xn being complex Gaussian, when dealing
with I it is sufficient to assume Rn and Tn are both diagonal. Consider

In(ρ) = (1/N) log det(HnH
∗
n + ρI).

This quantity is the mutual information per receiver antenna. It follows that

I = NIn(ρ)−N log ρ.

Work on the closeness of In(ρ) to a bounded deterministic value, Vn(ρ), determined by
Rn, Tn, and An as n and N approach infinity, has been done previously (Hachem, et.al.
Ann. Appl. Probab. 17(3), 2007, 875-930). It is assumed that

(∗∗) 0 < lim inf
n

N

n
≤ lim sup

N

n
<∞.

The fluctuations of In(ρ) are important to understand, for example, in determining
the probability of an outage, which is the inability to transmit at a given rate. The limiting
distributional behavior of In(ρ) has been achieved in [4]. In the paper it is shown, when
the entries of Xn are iid standardized with finite 16-th moment, and when (∗∗) holds, there
exists a Θn, defined by Rn, Tn, and An ((2.3) of the paper) for which

N√
Θn

(In(ρ)− EIn(ρ))
D−→ N(0, 1),

as n→∞. The convergence of the bias term N(EIn(ρ)−Vn(ρ)) is also shown to converge
under certain assumptions. In particular, when the entries of Xn are complex Gaussian,
it is shown that

N(EIn(ρ)− Vn(ρ)) = O(N−1).

This central limit theorem is the first assuming a Rician system, where An is non-zero.
Robust M-estimators. Research was also conducted on bringing together work on

large dimensional sample covariance matrices and that of robust estimation of population
covariance matrices. A large body of work on the latter has been developed for the purpose
of handling outliers and heavy-tailed distributions. Let x ∈ Cn be a mean zero random
vector with covariance matrice Cn = E(xx∗). The goal is to acquire an estimate of Cn from

4



N > n independent samples, x1, . . . , xN of x. A robust M-estimator, Ĉn of Cn is defined
to be a solution to

(∗∗) Ĉn =
1

N

N∑
i=1

u

(
1

n
x∗i Ĉ

−1
n xi

)
xix
∗
i

where u ≥ 0 is a suitably chosen function. This matrix, known to exist, has displayed
important robust properties, and converges with probability 1 to Cn as N → ∞. The
principal investigator worked on showing properties of Ĉn when n and N both increase to
infinity, but are on the same order of magnitude. This was achieved in two cases. The first
is where x = xn = Anyn, where An is n ×m withAnAn∗ = Cn and yn ∈ Cm consists of
independent standardized entries. It was done by comparing Ĉn to the sample covariance
matrix

Ŝn =
1

N

N∑
i=1

xix
∗
i .

The following results are containing in [5]. Assume u : R+ → R+ is nonincreasing, contin-
uous, with the function φ(s) = su(s) nondecreasing, bounded with sups φ(s) > 1. Assume
the existence of positive η and α such that for all n maxj E(|ynj |8+η) < α, and with
cn = n/N , c̄n = m/n assume

0 < lim inf
n

cn ≤ lim sup
n

cn < 1 and lim sup
n

c̄n <∞.

Finally, assume all eigenvalues of Cn are contained in a fixed bounded interal away from 0
for all n. Then

Theorem 1: (I) There exists a unique solution, Ĉn to (∗∗) for all large n a.s. which
can be obtained by

Ĉn = lim
t→∞

Z(t),

where Z(0) = I and

Z(t+1) =
1

N

N∑
i=1

u

(
1

n
x∗i (Z

(t))−1xi

)
xix
∗
i .

(II) With ‖ · ‖ denoting spectral norm on matrices

‖φ−1(1)Ĉn − Ŝn‖
a.s.−→ 0.

Using known properties on Ŝn Theorem 1 was applied to the direction of arrivals problem
in array signal processing. Assume K signals are impinging on a collection of n sensors
with angles θt, . . . , θK . At each instant of time, t, assume the vector of data, xt ∈ Cn at
the sensors is of the form

xt =
K∑
k=1

√
pks(θk)zk,t + σwt,

5



where s(θ) ∈ Cn is the known nonrandom unit norm steering vector for signals impinging
the sensors at angle θ, zk,t ∈ C is the signal source which is standardized with finite 8 + η
absolute moment, iid across t and independent across k, pk > 0 is the transmit power of
source k, and σwt ∈ Cn is the noise received at time t, where w containing iid entries, stan-
dardized, with finite 8+η absolute moments. Then xt = Anyt, with AN = [S(Θ)P 1/2 σI],
S(Θ) = [s(θ1), . . . , s(θK)], P = diag(p1, . . . , pK), and yt = (z1,t, . . . , zK,t, w

T
t )T ∈ Cn+K .

Assume the above conditions on n, N , and M = N + K. It is straightforward to verify
that Cn has smallest eigenvalue σ2 with multiplicity n − K. Then the following is also
proven.

Theorem 2: Let E ∈ Cn×(n−K) be a matrix with columns containing orhogonal eigen-
vectors of Cn corresponding to eigenvalue σ2. Let êk denote the eigenvector of Ĉn with
eigenvalue λ̂k, λ1 ≤ · · · ≤ λn. Then, as n→∞

γ(θ)− γ̂(θ)
a.s.−→ 0,

where
γ(θ) = s(θ)∗EE∗s(θ)

γ̂(θ) =
n∑
i=1

βis(θ)
∗êiê

∗
i s(θ)

and

βi =

 1 +
∑n
k=n−K+1

(
λ̂

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i ≤ n−K

−
∑n−K
k=1

(
λ̂

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i > n−K

with µ̂1 ≤ · · · ≤ µ̂n the eigenvalues of diag(λ̂)− 1
n

√
λ̂
√
λ̂
T

, λ̂ = (λ̂1, . . . , λ̂n)T.
In the classic MUSIC (multiple signal classification) algorithm, if Cn were known, γ

would be used to determine the angles θj , being the zeros of γ. With Theorem 2 a robust
estimate of γ in the large dimensional setting can be made where the estimates of the
angles are made as the values which minimize γ̂.

In [6] the above results were extended to the xi being elliptically distributed. Specif-
ically, it is assumed that xi =

√
τiAnyn, where An is as above except n ≤ m, the τi

are real random with some additional assumptions, and the yi are independent unitar-
ily invariant zero-mean vectors with ‖yi‖ = m, independent of the τi. Assume also that
(sups φ(s))cn < 1. Then Theorem 1 of the previous paper holds true in this case, where
now (II) is now

‖Ĉn − Ŝn‖
a.s.−→ 0,

where

Ŝn =
1

N

N∑
i=1

vn(τiγn)xix
∗
i ,

with γn is the unique positive solution to the equation

1 =
1

N

N∑
i=1

ψn(τiγ)

1 + cnψn(τiτ)
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and vn(x) = un(g−1n (x)), ψn(x) = xvn(x), gn(x) = x/(1− cnφ(x)).
CLT of linear spectral statistics of a spiked population model. Consider the

sample covariance matrix with a spiked population model discussed in the proposal: Bn =

(1/N)T
1/2
n XnX

∗
nT

1/2
n where T

1/2
n , n×n, is the Hermitian nonnegative definite square root

of the nonnegative definite matrix Tn, Xn is n×N consisting of i.i.d. standardized entries,
cn = n/N → c > 0, as n→∞, and for a fix M the eigenvalues of Tn are 1 with multiplicity
n−M , the remaining M eigenvalues being different than 1. The limiting behavior of the
M ”spiked” eigenvalues is given in (2) of the proposal. Let Hn denote the empirical
distribution function of the eigenvalues of Tn, and F cn,Hn the nonrandom distribution
function corresponding to the empirical distribution function of the eigenvalues of Bn, as
described in the proposal: F cn,Hn is defined through F̂ cn,Hn(x) = 1−cn+cnF

cn,Hn (x ≥ 0),
which corresponds to the empirical distribution of the eigenvalues of (1/N)X∗nTnXn, the
Stieltjes transform mF̂ cn,Hn having a unique inverse given by

z(m) ==
1

m
+ cn

∫
t

1 + tm
dHn(t).

In [7] the distributional behavior of linear statistics of eigenvalues of Bn for arbitrary
Tn is studied where Hn converges in distribution to H. Let λ1 ≥ · · · ≥ λn denote the
eigenvalues of Bn. When the second and fourth moments of X11 match that of a real or
complex normal random variable, it is shown that for analytic function f

(∗ ∗ ∗) Xn(f) = n

(
1

n

n∑
i=1

f(λi)−
∫
f(x)dF cn,Hn

)

converges in distribution to a Gaussian random variable with known mean and variance
depending on c and H. The convergence will be the same whether Tn is the identity
matrix or of spiked behavior (M eigenvalues different than 1), since the limiting H will
not change. However, the difference between the two F cn,Hn will be of order 1/n and in
(∗∗∗) there is an n multiplying the difference between the linear statistic and the centering
term, rendering a significant difference between the spiked and unspiked models.

In [8] the difference between the two F cn,Hn is derived up to an 0(1/n2) term. It is
given as Theorem 1 in the paper. It is applied to determine the power of a test introduced
in [9]. Under Gaussian assumptions and when c < 1 A corrected likelihood ratio statistic

L̃∗ = trBn − log |Bn − n

(‖ · ‖ denoting determinant) is introduced to test the hypothesis

H0 : T = I vs. H1 : T 6= I.

They prove in the paper that under H0

L̃∗ − n
(

1− cn − 1

cn
log(1− cn)

)
D−→ N(m(g), v(g)),
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where

m(g) = − log(1− c)
2

and v(g) = −2 log(1− c)− 2c.

This will yield the probability of a type I error.
Because of Theorem 1 in [8], the power of the test can be determined under the

specific alternative hypothesis H∗1 : Bn has M eigenvalues different than 1, having distinct
eigenvalues a1 ≥ · · · ≥ ak with respective multipliciites n1, . . . , nk. It is shown in [8] that,
under H∗1 , the centering term

∫
(x− log x− 1)dF cn,Hn is

1 +
1

n

k∑
i=1

ni(ai − log ai)−
M

n
−
(

1− 1

cn

)
log(1− cn) + 0

(
1

n2

)
.

Therefore, from (∗ ∗ ∗∗), under H∗1

L̃∗ − n
∫

(x− log x− 1)dF cn,Hn
D−→ N(m(g), v(g)).

With Φ denoting the standard distribution function, using significance level α (typically
.05) it follows that the asymptotic power function of the test is

1− Φ

(
Φ−1(1− α)−

∑k
i=1 ni(ai − 1− log ai)√
−2 log(1− c)− 2c

)
.
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